
Specifica tecnica

Progetto Trustify

pentasoftswe@gmail.com

Informazioni sul documento

Responsabile Luca Marcato

Redattori Nicola Lazzarin

Marco Brugin

Luca Marcato

Verificatori Marco Brugin

Nicola Lazzarin

Uso Esterno

Destinatari Prof. Tullio Vardanega

Prof. Riccardo Cardin

Versione v2.0.0

Sommario
Il presente documento riporta tutte le scelte architetturali fatte dal gruppo PentaSoft durante lo

sviluppo del prodotto Trustify. Per la descrizione del prodotto, vengono utilizzati i diagrammi delle
classi.

Registro delle Modifiche

Versione Data Autore Verificatore Descrizione

2.0.0 2023/06/07
Luca Marcato
(Responsabile)

Approvazione per il rilascio

1.1.0 2023/06/07 Marco Rosin Verifica generale del documento

1.0.1 2023/06/07
Nicola Lazzarin
(Progettista)

Marco Rosin Aggiornamento documento in se-

guito a colloquio PB

1.0.0 2023/05/11
Luca Marcato
(Responsabile)

Marco Brugin Approvazione per il rilascio

0.0.5 2023/05/9
Nicola Lazzarin
(Progettista)

Marco Brugin Stesura § requisiti soddisfatti

0.0.4 2023/05/9
Marco Brugin
(Progettista)

Nicola Lazzarin Stesura § componente di API-

REST

0.0.3 2023/05/5
Luca Marcato
(Progettista)

Marco Brugin Stesura § componente di fron-

tend

0.0.2 2023/05/3
Nicola Lazzarin
(Progettista)

Marco Brugin Stesura § componente di bac-

kend

0.0.1 2023/03/11
Nicola Lazzarin
(Progettista)

Marco Brugin Creazione struttura documento e

stesura Introduzione

Indice

1 Introduzione 1
1.1 Scopo del documento . 1
1.2 Scopo del prodotto . 1
1.3 Glossario . 1
1.4 Riferimenti . 1

1.4.1 Normativi . 1
1.4.2 Informativi . 1

2 Architettura 3
2.1 Componente di back-end . 3

2.1.1 Pattern architetturali e di design . 3
2.1.2 Interfacce e librerie . 4
2.1.3 TCoin . 4

2.1.3.1 Metodi . 4
2.1.4 Trustify . 4
2.1.5 Struct ed enumerazioni . 4

2.1.5.1 Enumerazioni . 4
2.1.5.2 Strutture dati . 5

2.1.5.2.1 Review . 5
2.1.5.2.2 Company . 5
2.1.5.2.3 Customer . 5

2.1.6 TrustifyDataBase . 6
2.1.7 TrustifyLogic . 6

2.1.7.1 Metodi . 6
2.2 Componente di front-end . 10

2.2.1 Webapp . 10
2.2.1.1 Angular Material . 10

2.2.2 Servizi Angular . 10
2.2.2.1 Servizio WalletService . 10
2.2.2.2 Servizio Web3Service . 11

2.3 Componente di API . 13
2.3.1 Descrizione delle classi . 13

2.4 Design pattern utilizzati . 14

3 Requisiti soddisfatti 15

4 Grafici riassuntivi 20

Elenco delle tabelle

2 Requisiti Funzionali . 15

Elenco delle figure

1 Diagramma delle classi della componente di back-end 9
2 Diagramma delle classi delle componenti di front-end e di interazione tra front-end e

back-end . 12
3 Diagramma delle classi della componente di API . 14
4 Requisiti funzionali soddisfatti . 20
5 Requisiti obbligatori soddisfatti . 20

1 Introduzione

1.1 Scopo del documento

La specifica tecnica ha lo scopo di fornire una descrizione completa dell’architettura del prodotto
software, delle tecnologie utilizzate e delle scelte architetturali adottate dal team di sviluppo durante le
attività di progettazione e codifica del prodotto. In particolare, la specifica tecnica include diagrammi
delle classi per descrivere l’architettura e le funzionalità principali del prodotto, al fine di fornire una
panoramica completa del sistema e delle sue interazioni. Inoltre, la Specifica tecnica include una
sezione dedicata ai requisiti soddisfatti dal prodotto, per consentire al team di valutare lo stato di
avanzamento del lavoro e garantire il rispetto degli obiettivi prefissati.

1.2 Scopo del prodotto

Scopo del progetto è la realizzazione di una webappG che permetta di rilasciare e visualizzare recensioni
certificate tramite uno smart contractG risiedente in una blockchainG EthereumG compatibile, al fine
di minimizzare la compravendita di recensioni e il review bombingG.

1.3 Glossario

Alcuni dei termini utilizzati in questo documento potrebbero generare dei dubbi riguardo al loro
significato, al fine di evitare tali ambiguità è necessario dar loro una definizione. Tali termini vengono
contassegnati da una G maiuscola finale,se questa non compare in un titolo di sezione, a pedice della
parola ed essa non verrà ripetuta più di una volta per paragrafo/sottosezione/sezione onde evitare
fastidiose ripetizioni. La loro spiegazione è riportata nel Glossario v2.0.0

1.4 Riferimenti

1.4.1 Normativi

• Norme di progetto v2.0.0

• Regolamento del progetto didattico:

https://www.math.unipd.it/ tullio/IS-1/2022/Dispense/PD02.pdf

• Presentazione Capitolato C7 - Trustify:

https://www.math.unipd.it/ tullio/IS-1/2022/Progetto/C7.pdf

1.4.2 Informativi

• Analisi dei requisiti v3.0.0

• Qualità di prodotto - slide T12 del corso di Ingegneria del Software:

https://www.math.unipd.it/ tullio/IS-1/2022/Dispense/T12.pdf

• Qualità di processo - slide T13 del corso di Ingegneria del Software:

https://www.math.unipd.it/ tullio/IS-1/2022/Dispense/T13.pdf

• Verifica e validazione: introduzione - slide T14 del corso Ingegneria del Software:

https://www.math.unipd.it/ tullio/IS-1/2022/Dispense/T14.pdf

Specifica tecnica Pagina 1 di 20

https://www.math.unipd.it/~tullio/IS-1/2022/Dispense/PD02.pdf
https://www.math.unipd.it/~tullio/IS-1/2022/Progetto/C7.pdf
https://www.math.unipd.it/~tullio/IS-1/2022/Dispense/T12.pdf
https://www.math.unipd.it/~tullio/IS-1/2022/Dispense/T13.pdf
https://www.math.unipd.it/~tullio/IS-1/2022/Dispense/T14.pdf

• Verifica e validazione: introduzione - slide T15 del corso Ingegneria del Software:

https://www.math.unipd.it/ tullio/IS-1/2022/Dispense/T15.pdf

• Verifica e validazione: introduzione - slide T16 del corso Ingegneria del Software:

https://www.math.unipd.it/ tullio/IS-1/2022/Dispense/T16.pdf

Specifica tecnica Pagina 2 di 20

https://www.math.unipd.it/~tullio/IS-1/2022/Dispense/T15.pdf
https://www.math.unipd.it/~tullio/IS-1/2022/Dispense/T16.pdf

2 Architettura

In modo da renderne più chiara la descrizione le scelte architetturali attuate dal gruppo di progetto
verranno analizzate con granularità sul singolo componente.

2.1 Componente di back-end

Gli (smart contract)G che costituiscono il componente di back-end sono stati progettati per essere
eseguibili sulla rete EthereumG e sulle reti basate su Ethereum, come imposto dal requisito di vincolo
RVO6. I quattro contratti che costituiscono il componente sono:

• TCoin: rappresenta un tokenG usato per il trasferimento di valuta tra gli utenti del sistema;

• Trustify: rappresenta l’interfaccia del sistema, ovvero i metodi che possono essere chiamati dai
vari sistemi esterni alla blockchain (web-app e API-REST);

• TrustifyLogic: rappresenta la business logicG del sistema, ovvero la gestione di pagamenti e
recensioni;

• TrustifyDataBase: rappresenta il database del sistema, ovvero la gestione delle informazioni
relative alle recensioni.

Tutti i contratti sono stati realizzati tramite il linguaggio di programmazione SolidityG, come imposto
dal requisito di vincolo RVO7.

2.1.1 Pattern architetturali e di design

L’architettura della blockchainG Ethereum introduce ulteriore complessità nello sviluppo di un sistema
manutenibile: dal momento in cui viene rilasciato ogni smart contractG installato sulla rete diventa
infatti immutabile, complicandone la manutenzione e l’eventuale evoluzione. Per superare tale limi-
tazione è possibile suddividere un contratto in più moduli aggiornabili singolarmente; è importante
sottolineare che questi aggiornamenti sono possibili solo virtualmente, poiché i contratti esistenti non
possono essere modificati.

Per la realizzazione del componente di back-end sono stati usati i seguenti design pattern:

• Proxy Delegate: design pattern del linguaggio Solidity, consente di delegare ad altri contratti
l’esecuzione di funzioni richieste al contratto che funge da proxy. Nel contesto di progetto è stato
usato per separare l’interfaccia pubblica del componente di back-end (il contratto Trustify) dalla
logica sottostante (il contratto TrustifyLogic). In questo modo sarà possibile modificare la logica
del sistema mantenendone invariata l’interfaccia pubblica.

• Eternal Storage: design pattern del linguaggio Solidity, consente di separare i dati memorizzati
in uno smart contract dalle operazioni che ne fanno uso. Nel contesto di progetto è stato usato
per realizzare il contratto TrustifyDatabase e disaccoppiare la logica contenuta nel contratto
TrustifyLogic dai dati da memorizzare. In questo modo sarà possibile modificare la logica di bu-
siness contenuta nel contratto TrustifyLogic senza dover modificare il contratto TrustifyDatabase
e senza perdere le recensioni precedentemente rilasciate.

• Layered Architecture: design pattern architetturale, consente di suddividere un sistema in N

livelli distinti, ognuno con un ruolo specifico. Nel contesto di progetto è stato usato per realizzare
una semplice architettura a tre livelli:

– livello di presentazione, rappresentato dal contratto Trustify ;

– livello di business, rappresentato dal contratto TrustifyLogic;

– livello di persistenza, rappresentato dal contratto TrustifyDataBase.

Specifica tecnica Pagina 3 di 20

2.1.2 Interfacce e librerie

I contratti implementano le seguenti interfacce e librerie:

• IERC20.sol: l’interfaccia standard per i token ERC20 ;

• SafeERC20.sol: una libreria che definisce metodi sicuri per il trasferimento dei token ERC20 ;

• Strings.sol: una libreria che definisce metodi per la manipolazione di stringhe;

• Ownable.sol: una libreria che definisce metodi per la gestione della proprietà di accesso di un
contratto.

2.1.3 TCoin

Il contratto TCoin estende il contratto ERC20G fornito dalla libreria OpenZeppelin, uno standard per
la rappresentazione e gestione di tokenG supportati dalla rete Ethereum.
Il contratto TCoin rappresenta la valuta usata all’interno del sistema, usata per pagare le imposte
collegate al rilascio delle recensioni e per i pagamenti che legittimano gli utenti a rilasciare recensioni.
Le funzioni per il trasferimento di token tra walletG vengono fornite dallo contratto ERC20, pertanto
non è stato necessario ridefinirle nel contratto TCoin.

2.1.3.1 Metodi Il contratto TCoin espone i seguenti metodi:

• constructor(string, string): costruttore del contratto;

– string: Nome da assegnare al token, valorizzato a "TCoin";

– string: Simbolo da assegnare al token, valorizzato a "TCoin".

• drip(): Genera 100.000 unità del token TCoin e le aggiunge al wallet del chiamante. Utilizza
la funzione mint(string, uint) fornita dal contratto ERC20.

2.1.4 Trustify

Il contratto Trustify rappresenta l’interfaccia pubblica del componente di back-end, utilizzata dai
componenti di front-end e API per comunicare con il resto del sistema. Implementato utilizzando
il design pattern Proxy Delegate, agisce come intermediario del contratto TrustifyLogic. In questo
modo è possibile modificare la logica sottostante mantenendo invariata l’interfaccia pubblica usata
dagli altri componenti del sistema.

2.1.5 Struct ed enumerazioni

2.1.5.1 Enumerazioni

Per gestire lo stato di ogni recensione i vari contratti fanno uso dell’enumerazione ReviewState. I
possibili stati di una recensione sono:

• ACTIVE: indica che la recensione non è mai stata modificata o eliminata;

• MODIFIED: indica che la recensione è stata modificata almeno una volta;

• DELETED: indica che la recensione è stata cancellata dal proprietario.

Specifica tecnica Pagina 4 di 20

Quando un utente cancella una recensione questa non viene realmente cancellata dalla Blockchain (in
quanto fisicamente impossibile), quindi il valore dell’enumerazione ReviewState viene modificato in
DELETED.

Ogni richiesta di lettura recensioni formulata al contratto ritornerà anche le recensioni marcate
come DELETED, delegando all’autore della richiesta l’eventuale filtraggio.

In caso di cancellazioni accidentali all’utente basterà modificare il contenuto della recensione per
aggiornarne lo stato da DELETED a MODIFIED.

2.1.5.2 Strutture dati

Per adempire al requisito di vincolo RVO1 e garantire una gestione e memorizzazione efficiente dei
dati sono state adottate le seguenti strutture dati:

2.1.5.2.1 Review

La struttura dati Review rappresenta una singola recensione ed è composta dai seguenti campi:

• [string] review: stringa contenente il testo della recensione;

• [uint8] stars: valore intero positivo, rappresenta il numero di stelle assegnate alla recensione;

• [bool] havePayed: valore booleano, indica se l’utente ha effettuato una transazione di paga-
mento;

• [ReviewState] state: rappresenta lo stato della recensione, assume uno dei valori dell’enume-
razione descritta in 2.1.4.1.

2.1.5.2.2 Company

La struttura dati Company rappresenta una singola azienda o esercizio commerciale ed è composta
dai seguenti campi:

• [address[]]allCustomerAddress: arrayG di indirizzi Ethereum contenente gli indirizzi degli
utenti che hanno recensito l’azienda rappresentata dalla struttura dati;

• [mapping(address => Review)]reviewMap: mappa che associa ad ogni recensione relativa al-
l’azienda rappresentata dalla struttura dati Company l’indirizzo dell’utente autore della recensio-
ne.

2.1.5.2.3 Customer

La struttura Customer rappresenta un singolo utente ed è composta dai seguenti campi:

• address[]allCompanyAddress: array di indirizzi Ethereum contenente gli indirizzi delle aziende
o esercizi commerciali recensite dall’utente rappresentato dalla struttura dati;

• [mapping(address => Review)]reviewMap: mappa che associa ad ogni indirizzo di azienda o
esercizio commerciale la recensione rilasciata dall’utente rappresentato dalla struttura dati.

Specifica tecnica Pagina 5 di 20

2.1.6 TrustifyDataBase

Il contratto TrustifyDatabase rappresenta il livello di persistenza dell’architettura. È stato proget-
tato per utilizzare apposite mappe per tenere traccia delle recensioni rilasciate degli utenti e delle
aziende/negozi che hanno ricevuto recensioni.

Il contratto definisce le seguenti mappe private:

• mapping(address => Company)companyMap: mappa che associa ad ogni indirizzo di azienda o
esercizio commerciale la propria istanza della struttura dati Company;

• mapping(address => Customer)customerMap: mappa che associa ad ogni indirizzo di utente
la propria istanza della struttura dati Customer.

Queste mappe funzionano da database per il contratto TrustifyLogic e permettono di ottenere e scri-
vere le varie informazioni attraverso dei metodi Getter e Setter. I metodi Setter possono esclusi-
vamente essere chiamati dal contratto TrustifyLogic, questo controllo avviene tramite il modificatore
checkPrivileges() che viene chiamato prima di ogni operazione di scrittura e controlla che l’indirizzo
del chiamante sia quello del contratto TrustifyLogic.

2.1.7 TrustifyLogic

Il contratto TrustifyLogic rappresenta la business logicG del progetto. Fornisce un sistema per la
gestione di pagamenti e recensioni che consente agli utenti di effettuare pagamenti e recensire aziende
e/o servizi, identificati da un indirizzo walletG univoco.
Per poter garantire l’autenticità delle recensioni il contratto permette di recensire solamente le azien-
de/servizi per le quali l’utente abbia precedentemente effettuato un ”pagamento”, ovvero il trasferi-
mento di token (nel nostro caso il token TCoin) dal proprio wallet a quello dell’azienda/servizio: questa
funzionalità è stata implementata mediante mappe e strutture dati la cui specifica viene descritta nelle
sezioni 2.1.5.2 e 2.1.6.

2.1.7.1 Metodi

Il contratto Trustify espone i seguenti metodi:

• function havePayed(address myAddress, address companyAddress)

public view returns (bool)

Funzione che controlla se uno specifico utente abbia effettuato un pagamento che lo autorizzi
a recensire una determinata azienda. Riceve gli indirizzi dell’utente (myAddress) e dell’azienda
(companyAddress) e restituisce un valore booleano true se l’utente è autorizzato a recensire,
false altrimenti. La funzione legge lo stato della recensione dell’utente all’interno della mappa
companyMap e controlla il valore del campo havePayed: se questo è true l’utente è autorizzato a
recensire, se è false l’utente non è autorizzato. La funzione non modifica lo stato delle mappe,
pertanto può essere dichiarata come viewG.

• modifier checkTransaction(address companyWalletAddress)

Il modificatore CheckTransaction viene usato all’interno delle funzioni WriteAReview e
DeleteReview per verificare che l’utente abbia effettuato una transazione verso l’indirizzo del-
l’azienda a cui sta scrivendo o cancellando una recensione. In particolare, CheckTransaction
controlla che l’utente abbia già effettuato un trasferimento di token all’azienda corrispondente,
salvato nella mappa textttreviewMap della Company relativa all’indirizzo dell’azienda e all’inter-
no della mappa customerMap della Customer relativa all’indirizzo dell’utente che ha effettuato

Specifica tecnica Pagina 6 di 20

la transazione. Se l’utente non ha ancora effettuato una transazione, il modificatore emette un
messaggio di errore. Questo modificatore viene usato esclusivamente all’interno del contratto e
non può essere chiamata da un utente esterno.

• modifier checkActionToYourself(address yourAddress)

Il modificatore CheckActionToYourself impone che l’azione richiesta non possa essere esegui-
ta dall’indirizzo chiamante stesso. In particolare, viene effettuato un controllo sulla condizione
che l’indirizzo passato come parametro yourAddress non coincida con l’indirizzo chiamante
msg.sender. Nel caso dovesse coincidere restituisce un errore.

Il modificatore viene utilizzato in due funzioni del contratto Trustify :

– DepositTokens: permette di depositare token in un determinato indirizzo passato come
parametro. L’indirizzo non può coincidere con l’indirizzo del chiamante della funzione.

– WriteAReview: permette di scrivere una recensione sull’azienda rappresentata dall’indirizzo
passato come parametro. L’indirizzo non può coincidere con l’indirizzo del chiamante della
funzione.

• function depositTokens(address addressToDeposit, uint amount)

public checkActionToYourself(addressToDeposit)

Questa funzione consente agli utenti di depositare token ERC20 dall’indirizzo del chiamante
a quello specificato dal parametro addressToDeposit. Il numero di token da depositare viene
specificato dal parametro amount. Prima di effettuare il deposito, viene invocato il modificatore
checkActionToYourself per verificare che gli indirizzi del chiamante e addressToDeposit non
coincidano: solo in caso di esito positivo i token verranno trasferiti.

• function deleteReview(address reviewAddress) public

checkActionToYourself(reviewAddress)

La funzione DeleteReview viene utilizzata per eliminare una recensione. Questo viene fatto
impostando lo stato della recensione a ReviewState.DELETED. In particolare, la funzione aggior-
na lo stato della recensione dell’utente chiamante e lo stato della recensione dell’azienda a cui è
stata lasciata la recensione. La funzione non elimina effettivamente la recensione dal contratto,
ma imposta solo il suo stato come ”eliminato”.

• function stateToString(ReviewState state) private pure returns (string memory)

La funzione StateToString è una funzione privata (che può essere chiamata solo all’interno
del contratto) che riceve un valore dell’enumerazione ReviewState e restituisce una stringa che
rappresenta lo stato corrispondente.

– Lo stato ACTIVE restituirà la stringa ”ACTIVE”;

– Lo stato MODIFIED restituirà la stringa ”MODIFIED”;

– Lo stato DELETED restituirà la stringa ”DELETED”.

Questa funzione viene utilizzata all’interno del contratto per convertire i valori dell’enumerazione
ReviewState in stringhe interpretabili da vari linguaggi di programmazione.

• function writeReview(address companyWalletAddress, string memory review,

uint stars, uint amount) public

checkActionToYourself(addressToReview),

Specifica tecnica Pagina 7 di 20

checkTransaction(addressToReview)

Questa funzione consente ad un utente di scrivere una recensione per l’azienda specificata dal
parametro addressToReview. Il corpo della recensione e il numero di stelle sono specificati dai
parametri review e stars. Prima di scrivere la recensione, viene verificato che l’utente abbia
effettuato una transazione con l’azienda tramite la funzione CheckTransaction e viene verificato
che non stia facendo un’azione su se stesso chiamando la funzione checkActionToYourself. Se
l’utente ha effettuato una transazione, la recensione viene scritta. Se invece non ha eseguito una
transazione il contratto restituirà un errore. Nel caso in cui l’utente abbia già scritto una recen-
sione per l’azienda, la vecchia recensione viene sovrascritta con la nuova. Viene anche aggiornato
il mapping della mappa customerMap con l’indirizzo dell’azienda e la nuova recensione.

• function getCompanyReview(uint start, uint end, address companyAddress)

public view returns (string[] memory, uint8[] memory)

La funzione GetCompanyReview restituisce un array di stringhe contenente le recensioni scritte
da un numero specificato di clienti per una determinata azienda, insieme ad un array di numeri
interi rappresentanti il numero di stelle assegnate ad ogni recensione e allo stato delle recensioni.
La funzione prende tre parametri in input:

– start è l’indice del primo elemento dell’array di recensioni da restituire;

– end è l’indice dell’ultimo elemento dell’array di recensioni da restituire;

– companyAddress è l’indirizzo dell’azienda di cui si vogliono visualizzare le recensioni.

La funzione effettua alcuni controlli sulla validità degli indici start ed end rispetto alla lunghezza
dell’array delle recensioni dell’azienda specificata, e in caso di superamento delle 25 recensioni per
chiamata restituisce un errore. In caso contrario, la funzione restituisce le recensioni comprese
nel range di indici indicato.

• function getSpecificReview(address addressReviewed)

public view returns (string memory, uint8)

Questa funzione, chiamata getSpecificReview, è una funzione di tipo view che restituisce
una tupla contenente una stringa e un numero intero. Questi valori rappresentano rispettiva-
mente una recensione specifica e il numero di stelle assegnato a tale recensione. La funzione
accetta un parametro addressReviewed che indica l’indirizzo dell’azienda per la quale si desi-
dera ottenere una recensione specifica. La funzione utilizza poi l’indirizzo del chiamante della
funzione (msg.sender) per accedere alla recensione specifica dell’azienda. La recensione e il nu-
mero di stelle assegnate sono quindi restituiti nella tupla di output. Inoltre, la funzione utilizza
anche un’istruzione require per verificare che il chiamante abbia effettivamente rilasciato una
recensione per l’azienda specificata. Se il numero di stelle assegnate è zero, viene restituito un
messaggio di errore che indica che il chiamante non ha rilasciato alcuna recensione per l’azienda
specificata.

• function getMyReview(uint start,uint end)

public view returns (string[] memory, uint8[] memory, address[] memory)

La funzione getMyReview restituisce un insieme di recensioni fatte da un utente specifico. Pren-
de in input due parametri start e end che rappresentano rispettivamente l’indice iniziale e finale
delle recensioni che si vogliono ottenere. La funzione verifica che l’utente abbia effettuato almeno
una recensione, che l’indice di partenza sia minore o uguale alla lunghezza totale delle recensioni

Specifica tecnica Pagina 8 di 20

e che la differenza tra l’indice finale e quello di partenza non sia superiore a 25. In caso contrario,
viene sollevata una eccezione. La funzione restituisce quindi quattro array contenenti le stringhe
delle recensioni, le stelle assegnate, lo stato delle recensioni e gli indirizzi delle aziende recensite
nell’intervallo specificato.

Figura 1: Diagramma delle classi della componente di back-end

Specifica tecnica Pagina 9 di 20

2.2 Componente di front-end

L’obiettivo principale della webapp è quello di fornire agli utenti un’esperienza d’interazione intuitiva
e facile con il sistema decentralizzato Trustify. In particolare, la piattaforma consente di visualizzare
le recensioni di un’azienda, fornendo un quadro completo e trasparente delle esperienze degli utenti
con quella specifica attività commerciale. Gli utenti possono anche scrivere e pubblicare recensioni
per un’azienda, condividendo le loro opinioni e raccomandazioni.

2.2.1 Webapp

La webappG per il sistema Trustify è stata creata utilizzando AngularG, uno dei frameworkG open
sourceG più utilizzati per lo sviluppo di applicazioni web moderne. Inoltre, il team di sviluppo ha
scelto di utilizzare TypeScriptG come linguaggio principale per la scrittura del codice, poiché questo
linguaggio fornisce una tipizzazione statica e altre caratteristiche avanzate che aiutano a rendere il
codice manutenibile, testabile e scalabile.

2.2.1.1 Angular Material

Angular Material è una libreria che aggiunge ad Angular lo stile grafico Material sviluppato da Google.
Fornisce componenti prefabbricati per l’interfaccia utente (UI) agli sviluppatori che usano Angular.
Nel progetto è stato fatto ampio uso di questa libreria al fine di ottenere un aspetto grafico uniforme
spendendo il minor numero possibile di ore da Programmatore, in modo da poter dedicare più tempo
alla codifica della business logic.

2.2.2 Servizi Angular

In Angular, un ”servizio” identifica qualsiasi insieme di funzionalità che vogliamo rendere disponibili
a componenti multipli. La web app fa uso di svariati servizi, di cui i due principali sono:

2.2.2.1 Servizio WalletService

La classe WalletService definisce un servizio per la gestione della connessione con il wallet Meta-
MaskG e la comunicazione con la blockchainG. Il servizio espone metodi per verificare la presenza
dell’estensione MetaMask e se l’utente sia connesso ad esso. Inoltre, il servizio permette di ottenere
l’indirizzo dell’account con cui l’utente si sia connesso a MetaMask e l’URL del provider HTTP di
InfuraG per la rete di test Sepolia. I metodi principali del servizio sono:

• getAccount()

Metodo asincrono che restituisce l’indirizzo dell’account con cui l’utente si sia connesso a Meta-
Mask. L’indirizzo dell’account viene utilizzato per inviare e ricevere transazioni sulla blockchain;

• isInstalled()

Metodo asincrono che verifica la presenza del plugin MetaMask nel browser dell’utente. Ne-
cessario poiché l’interazione con MetaMask è obbligatoria per gestire la connessione con la
blockchain.

• isWalletConnected()

Metodo asincrono che restituisce true se l’utente è attualmente connesso a MetaMask.

Specifica tecnica Pagina 10 di 20

• connectToMetamask()

Metodo asincrono che apre la finestra di dialogo di connessione di MetaMask e, nel caso in
cui l’utente accetti la connessione, imposta l’indirizzo dell’account corrente e il provider Web3G.
Questo metodo viene utilizzato per connettersi a MetaMask e impostare le variabili di stato del
servizio.

• switchNetwork()

Metodo asincrono che permette di cambiare rete in cui si trova il wallet MetaMask, in que-
sto caso viene utilizzato per passare alla rete Sepolia. Il metodo controlla prima se la rete sia
già presente in MetaMask, altrimenti la aggiunge.

• connect()

Metodo asincrono usato come wrapper per i metodi connectToMetamask() switchNetwork().
Usato per connettersi a MetaMask e passare alla rete Sepolia.

2.2.2.2 Servizio Web3Service

La classe Web3Service rappresenta un servizio Angular che fornisce una serie di funzionalità per
interagire con la blockchain Ethereum tramite la libreria Web3.js. In particolare, la classe fornisce
metodi per effettuare operazioni con i contratti (TCoin e Trustify) presenti sulla blockchain.

I metodi principali del servizio sono:

• pullTCoin()

Metodo asincrono che invia una transazione allo smart contract TCoin per richiedere l’invio
di token.

• getTokenBalance()

Metodo asincrono che restituisce il saldo di token TCoin dell’account con cui il servizio comunica.

• approveTokens()

Metodo asincrono che richiede l’autorizzazione per la spesa di un determinato numero di token
TCoin allo smart contract Trustify.

• depositTokens()

Metodo asincrono che invia una transazione allo smart contract Trustify per depositare un
determinato numero di token TCoin.

• writeAReview()

Metodo asincrono che invia una transazione allo smart contract Trustify per scrivere una re-
censione per un’azienda.

• getCompanyReview()

Metodo asincrono che restituisce un array contenente le recensioni delle aziende tra un intervallo
di indici.

Specifica tecnica Pagina 11 di 20

• getSpecificReview()

Metodo asincrono che restituisce la recensione e il punteggio in stelle associati a un’azienda
specifica.

• getMyReview()

Metodo asincrono che restituisce la recensione e il punteggio in stelle dell’utente corrente per
una determinata azienda.

• deleteReview()

Metodo asincrono che invia una transazione all contratto Trustify per cancellare la recensione
dell’utente corrente per una determinata azienda.

Figura 2: Diagramma delle classi delle componenti di front-end e di interazione tra front-end e back-end

Specifica tecnica Pagina 12 di 20

2.3 Componente di API

L’obiettivo di questa componente è di fornire agli e-commerceG un’interfaccia per poter dialogare con
la blockchainG EthereumG e poter usufruire dei servizi offerti da TrustifyG. Per far ciò è stata svilup-
pata una APIG conforme allo stile architetturale RESTG. La componente di API è stata sviluppata
utilizzando il frameworkG Spring Boot e il linguaggio di programmazione JavaG.

2.3.1 Descrizione delle classi

TrustifyContractReader

La classe TrustifyContractReader è una classe che permette di ottenere le recensioni di una de-
terminata azienda attraverso l’uso di una smart contract Ethereum. In particolare, è possibile creare
un’istanza della classe TrustifyContractReader passando come argomenti l’indirizzo dell’azienda,
la posizione iniziale e finale dell’intervallo di recensioni da recuperare. La classe utilizza la libreria
Web3j per interagire con la blockchain Ethereum e la libreria TuplesG per gestire i risultati delle tran-
sazioni. Il metodo getReviews() è quello che effettivamente esegue la chiamata allo smart contract e
restituisce una lista di oggetti Review.

Review

La classe Review rappresenta una recensione con le seguenti proprietà:

• [string]text: stringa che rappresenta il testo della recensione;

• [int]stars: intero che rappresenta il numero di stelle della recensione.

ErrorMessage

La classe ErrorMessage rappresenta un messaggio di errore. Possiede la proprietà message che con-
tiene il messaggio di errore. Viene usata per ritornare il codice HTTP dell’eventuale errore avvenuto
durante l’esecuzione di una richiesta HTTP.

AppExceptionHandler

La classe AppExceptionHandler è una classe di gestione delle eccezioni.
Estende la classe ResponseEntityExceptionHandler e definisce un metodo di gestione per tutte le
eccezioni lanciate dall’applicazione. In particolare, il metodo restituisce un oggetto ErrorMessage

contenente il messaggio di errore.

SmartContractReaderController

La classe SmartContractReaderController rappresenta un controller REST che definisce un’API
per accedere alle recensioni tramite interfaccia HTTP. Il metodo SmartContractReader della classe
si occupa di chiamare il metodo getReviews() della classe TrustifyContractReader per ottenere le
recensioni.

TrustifyRestApplication

La classe TrustifyRestApplication è la classe di avvio dell’applicazione Spring Boot e contiene
il metodo main che avvia l’applicazione.

Specifica tecnica Pagina 13 di 20

Figura 3: Diagramma delle classi della componente di API

2.4 Design pattern utilizzati

Per il progetto Trustify sono stati utilizzati i seguenti design patternG:

• Dependency Injection: è stato utilizzato nella web app per iniettare i servizi nei componenti
dell’applicazione. L’implementazione di questo pattern viene fornita dal frameworkG Angular.

Specifica tecnica Pagina 14 di 20

3 Requisiti soddisfatti

Tabella 2: Requisiti Funzionali

Codice Descrizione Classificazione Fonti

RFO1
L’utente deve poter collegare il proprio wal-
letG alla webappG tramite MetamaskG.

Obbligatorio Soddisfatto

RFO1.1
L’utente deve poter visualizzare un messaggio
di errore nel casoMetamask non sia installato.

Obbligatorio Soddisfatto

RFO1.2
L’utente deve poter visualizzare un messag-
gio informativo quando il proprio wallet venga
connesso correttamente.

Obbligatorio Soddisfatto

RFO2
L’utente deve poter rilasciare una recensione
relativa a un’attività per cui abbia preceden-
temente effettuato un pagamento.

Obbligatorio Soddisfatto

RFO2.1

L’utente deve poter visualizzare un messaggio
di errore connessione nel caso in cui per assen-
za di connessione non sia possibile effettuare
una nuova recensione.

Obbligatorio Soddisfatto

RFO2.2
L’utente deve poter inserire l’indirizzo dell’at-
tività da recensire.

Obbligatorio Soddisfatto

RFO2.2.1
L’utente deve poter visualizzare un messaggio
di errore nel caso non sia stato inserito alcun
indirizzo wallet.

Obbligatorio Soddisfatto

RFO2.2.2
L’utente deve poter visualizzare un messaggio
di errore nel caso l’indirizzo wallet dell’attività
inserito non sia corretto.

Obbligatorio Soddisfatto

RFO2.3
L’utente deve poter inserire la descrizione del-
la recensione.

Obbligatorio Soddisfatto

RFO2.4
L’utente deve poter inserire il parametro di
valutazione della recensione.

Obbligatorio Soddisfatto

RFO2.4.1
L’utente deve poter visualizzare un messaggio
di errore nel caso il parametro di valutazione
della recensione non sia stato inserito.

Obbligatorio Soddisfatto

RFO2.4.2
L’utente deve poter visualizzare un messaggio
di errore nel caso il valore del parametro di
valutazione della recensione non sia valido.

Obbligatorio Soddisfatto

FContinua nella prossima pagina

Specifica tecnica Pagina 15 di 20

FTabella 2 – Continua dalla pagina precedente

Codice Descrizione Classificazione Fonti

RFO2.4.3
L’utente deve poter inserire il valore 1 per il
parametro di valutazione.

Obbligatorio Soddisfatto

RFO2.4.4
L’utente deve poter inserire il valore 2 per il
parametro di valutazione.

Obbligatorio Soddisfatto

RFO2.4.5
L’utente deve poter inserire il valore 3 per il
parametro di valutazione.

Obbligatorio Soddisfatto

RFO2.4.6
L’utente deve poter inserire il valore 4 per il
parametro di valutazione.

Obbligatorio Soddisfatto

RFO2.4.7
L’utente deve poter inserire il valore 5 per il
parametro di valutazione.

Obbligatorio Soddisfatto

RFO3
L’utente deve poter visualizzare una lista di
recensioni.

Obbligatorio Soddisfatto

RFO3.1

L’utente deve poter visualizzare un messaggio
di errore connessione nel caso in cui per assen-
za di connessione non sia possibile visualizzare
la lista di recensioni.

Obbligatorio Soddisfatto

RFO3.2
L’utente deve poter visualizzare un messaggio
informativo nel caso la lista di recensioni sia
vuota.

Obbligatorio Soddisfatto

RFO3.3
L’utente deve poter visualizzare una singola
recensione presente nella lista.

Obbligatorio Soddisfatto

RFO3.3.1
L’utente deve poter visualizzare il parametro
di valutazione di una singola recensione pre-
sente nella lista.

Obbligatorio Soddisfatto

RFO3.3.2
L’utente deve poter visualizzare la descrizione
di una singola recensione presente nella lista.

Obbligatorio Soddisfatto

RFF3.3.2.1
L’utente deve poter visualizzare un messaggio
informativo nel caso la descrizione della recen-
sione sia vuota.

Facoltativo Non Soddisfatto

RFO3.3.3
L’utente deve poter visualizzare l’indirizzo
wallet dell’attività recensita dalla singola re-
censione presente nella lista.

Obbligatorio Soddisfatto

RFO4
L’utente deve poter visualizzare la lista di re-
censioni che ha rilasciato.

Obbligatorio Soddisfatto

FContinua nella prossima pagina

Specifica tecnica Pagina 16 di 20

FTabella 2 – Continua dalla pagina precedente

Codice Descrizione Classificazione Fonti

RFO4.1
L’utente deve poter visualizzare un messaggio
informativo nel caso non abbia rilasciato alcu-
na recensione.

Obbligatorio Soddisfatto

RFO4.2

L’utente deve poter visualizzare un messaggio
di errore nel caso un errore di connessione non
permetta la visualizzazione delle sue recensio-
ni.

Obbligatorio Soddisfatto

RFO4.3
L’utente deve poter visualizzare una singola
recensione presente nella lista delle proprie re-
censioni.

Obbligatorio Soddisfatto

RFO4.3.1
L’utente deve poter visualizzare il parametro
di valutazione di una singola recensione pre-
sente nella lista delle proprie recensioni.

Obbligatorio Soddisfatto

RFO4.3.2
L’utente deve poter visualizzare la descrizione
di una singola recensione presente nella lista
delle proprie recensioni.

Obbligatorio Soddisfatto

RFF4.3.2.1
L’utente deve poter visualizzare un messaggio
informativo nel caso in cui la descrizione della
propria recensione sia vuota.

Facoltativo Non Soddisfatto

RFO4.3.3

L’utente deve poter visualizzare l’indirizzo
wallet dell’attività recensita dalla singola re-
censione presente nella lista delle proprie re-
censioni.

Obbligatorio Soddisfatto

RFO5
L’utente deve poter effettuare la modifica di
una propria recensione rilasciata in preceden-
za.

Obbligatorio Soddisfatto

RFO5.1
L’utente deve poter visualizzare un messaggio
di errore nel caso un errore di connessione im-
pedisca il completamento della modifica.

Obbligatorio Soddisfatto

RFO5.2
L’utente deve poter effettuare la modificare
del parametro di valutazione di una propria
recensione rilasciata in precedenza.

Obbligatorio Soddisfatto

RFO5.2.1
L’utente deve poter visualizzare un messaggio
di errore nel caso in cui non abbia inserito nes-
sun valore del parametro di valutazione.

Obbligatorio Soddisfatto

FContinua nella prossima pagina

Specifica tecnica Pagina 17 di 20

FTabella 2 – Continua dalla pagina precedente

Codice Descrizione Classificazione Fonti

RFO5.2.2
L’utente deve poter visualizzare un messaggio
di errore nel caso in cui il valore modificato
del parametro di valutazione non sia valido.

Obbligatorio Soddisfatto

RFO5.2.3
L’utente deve poter modificare il valore del pa-
rametro di valutazione al valore 1

Obbligatorio Soddisfatto

RFO5.2.4
L’utente deve poter modificare il valore del pa-
rametro di valutazione al valore 2

Obbligatorio Soddisfatto

RFO5.2.5
L’utente deve poter modificare il valore del pa-
rametro di valutazione al valore 3

Obbligatorio Soddisfatto

RFO5.2.6
L’utente deve poter modificare il valore del pa-
rametro di valutazione al valore 4

Obbligatorio Soddisfatto

RFO5.2.7
L’utente deve poter modificare il valore del pa-
rametro di valutazione al valore 5

Obbligatorio Soddisfatto

RFO5.3
L’utente deve poter modificare la descrizione
di una propria recensione rilasciata in prece-
denza.

Obbligatorio Soddisfatto

RFF5.3.1
L’utente deve poter visualizzare una richiesta
di conferma di modifica di una recensione la
cui descrizione sia vuota.

Facoltativo Non Soddisfatto

RFO6
L’utente deve poter eliminare una propria re-
censione precedentemente rilasciata.

Obbligatorio Soddisfatto

RFO6.1
L’utente deve poter visualizzare un messaggio
di errore nel caso un errore di connessione im-
pedisca il completamento dell’eliminazione.

Obbligatorio Soddisfatto

RFO7
L’utente deve poter effettuare un pagamento
dal proprio wallet gestito da Metamask.

Obbligatorio Soddisfatto

RFO7.1
L’utente deve poter visualizzare un messaggio
di errore nel caso un errore di connessione im-
pedisca il completamento della transazione.

Obbligatorio Soddisfatto

RFO7.2
L’utente deve poter inserire l’indirizzo del wal-
let destinatario del pagamento.

Obbligatorio Soddisfatto

RFO7.2.1
L’utente deve poter visualizzare un messaggio
di errore nel caso in cui non abbia inserito al-
cun indirizzo wallet.

Obbligatorio Soddisfatto

FContinua nella prossima pagina

Specifica tecnica Pagina 18 di 20

FTabella 2 – Continua dalla pagina precedente

Codice Descrizione Classificazione Fonti

RFO7.2.2
L’utente deve poter visualizzare un messaggio
di errore nel caso in cui abbia inserito l’indi-
rizzo wallet in un formato non valido.

Obbligatorio Soddisfatto

RFO7.3
L’utente deve poter inserire la quantità di to-
ken ERC20G da inviare.

Obbligatorio Soddisfatto

RFO7.3.1
L’utente deve poter visualizzare un messaggio
di errore nel caso in cui non abbia inserito al-
cuna quantità di token ERC20 da inviare.

Obbligatorio Soddisfatto

RFO7.3.2
L’utente deve poter visualizzare un messag-
gio di errore nel caso in cui abbia inserito una
quantità non valida di token ERC20.

Obbligatorio Soddisfatto

RFO8
L’utente deve poter effettuare una ricerca sulle
recensioni presenti nel sistema.

Obbligatorio Soddisfatto

RFO8.1
L’utente deve poter visualizzare un messaggio
di errore nel caso un errore di connessione im-
pedisca di effettuare la ricerca.

Obbligatorio Soddisfatto

RFO8.2
L’utente deve poter inserire l’indirizzo wallet
di una attività di cui desidera cercare le recen-
sioni.

Obbligatorio Soddisfatto

RFO8.2.1
L’utente deve poter visualizzare un messaggio
di errore nel caso in cui non abbia inserito al-
cun indirizzo wallet.

Obbligatorio Soddisfatto

RFO8.2.2
L’utente deve poter visualizzare un messaggio
di errore nel caso in cui abbia inserito l’indi-
rizzo wallet in un formato non valido.

Obbligatorio Soddisfatto

Specifica tecnica Pagina 19 di 20

4 Grafici riassuntivi

Per quanto riguarda il soddisfacimento dei requisiti funzionali, il gruppo è riuscito a soddisfare 57 su
60.

Figura 4: Requisiti funzionali soddisfatti

Mentre per quanto riguarda i requisiti obbligatori il gruppo ne ha soddisfatto 78 su 78.

Figura 5: Requisiti obbligatori soddisfatti

Specifica tecnica Pagina 20 di 20

	Introduzione
	Scopo del documento
	Scopo del prodotto
	Glossario
	Riferimenti
	Normativi
	Informativi

	Architettura
	Componente di back-end
	Pattern architetturali e di design
	Interfacce e librerie
	TCoin
	Metodi

	Trustify
	Struct ed enumerazioni
	Enumerazioni
	Strutture dati
	Review
	Company
	Customer

	TrustifyDataBase
	TrustifyLogic
	Metodi

	Componente di front-end
	Webapp
	Angular Material

	Servizi Angular
	Servizio WalletService
	Servizio Web3Service

	Componente di API
	Descrizione delle classi

	Design pattern utilizzati

	Requisiti soddisfatti
	Grafici riassuntivi

